Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank
نویسندگان
چکیده
We consider primal-dual algorithms for certain types of infinite-dimensional optimization problems. Our approach is based on the generalization of the technique of finite-dimensional Euclidean Jordan algebras to the case of infinite-dimensional JB-algebras of finite rank. This generalization enables us to develop polynomial-time primal-dual algorithms for “infinite-dimensional second-order cone programs.” We consider as an example a long-step primal-dual algorithm based on the Nesterov-Todd direction. It is shown that this algorithm can be generalized along with complexity estimates to the infinite-dimensional situation under consideration. An application is given to an important problem of control theory: multi-criteria analytic design of the linear regulator. The calculation of the Nesterov-Todd direction requires in this case solving one matrix differential Riccati equation plus solving a finite-dimensional system of linear algebraic equations on each iteration. The size of this algebraic system is m + 1 by m + 1, where m is a number of quadratic performance criteria.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملDual pairs and infinite dimensional Lie algebras
We construct and study various dual pairs between finite dimensional classical Lie groups and infinite dimensional Lie algebras in some Fock representations. The infinite dimensional Lie algebras here can be either a completed infinite rank affine Lie algebra, the W1+∞ algebra or its certain Lie subalgebras. We give a formulation in the framework of vertex algebras. We also formulate several co...
متن کاملExtension of primal-dual interior point algorithms to symmetric cones
In this paper we show that the so-called commutative class of primal-dual interior point algorithms which were designed by Monteiro and Zhang for semidefinite programming extends word-for-word to optimization problems over all symmetric cones. The machinery of Euclidean Jordan algebras is used to carry out this extension. Unlike some non-commutative algorithms such as the XS+SXmethod, this clas...
متن کاملLinear Systems in Jordan Algebras and Primal-dual Interior-point Algorithms
We discuss a possibility of the extension of a primal-dual interior-point algorithm suggested recently in 1]. We consider optimization problems deened on the intersection of a symmetric cone and an aane subspace. The question of solvability of a linear system arising in the implementation of the primal-dual algorithm is analyzed. A nondegeneracy theory for the considered class of problems is de...
متن کاملPrimal-Dual Methods for Solving Infinite-Dimensional Games
In this paper we show that the infinite-dimensional differential games with simple objective functional can be solved in a finite-dimensional dual form in the space of dual multipliers for the constraints related to the end points of the trajectories. The primal solutions can be easily reconstructed by the appropriate dual subgradient schemes. The suggested schemes are justified by the worst-ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 97 شماره
صفحات -
تاریخ انتشار 2003